Indium(III) hydroxide

From Infogalactic: the planetary knowledge core
(Redirected from Indium hydroxide)
Jump to: navigation, search
Indium(III) hydroxide
Names
IUPAC name
Indium(III) hydroxide
Other names
Indium hydroxide, indium trihydroxide
Identifiers
20661-21-6
EC Number 243-947-7
Jmol 3D model Interactive image
PubChem 88636
  • InChI=1S/In.3H2O/h;3*1H2/q+3;;;/p-3
    Key: IGUXCTSQIGAGSV-UHFFFAOYSA-K
  • [OH-].[OH-].[OH-].[In+3]
Properties
In(OH)3
Molar mass 165.8404 g/mol
Appearance white
Density 4.38 g/cm3
Melting point 150 °C (302 °F; 423 K) (decomposes)
insoluble
1.725
Structure
cubic
Im3
octahedral
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Indium(III) hydroxide is the chemical compound with the formula In(OH)3, its prime use is as a precursor to indium(III) oxide, In2O3.[1] It is sometimes found as the rare mineral dzhalindite.

Structure

In(OH)3 has a cubic structure, space group Im3, a distorted ReO3 structure[2][3]

Preparation and reactions

Neutralising a solution of an InIII salt such as In(NO3)3, indium nitrate or a solution of InCl3 gives a white precipitate that on ageing forms In(OH)3.[4][5] A thermal decomposition of freshly prepared In(OH)3 shows the first step is the conversion of In(OH)3.xH2O to cubic In(OH)3[4] The precipitation of indium hydroxide was a step in the separation of indium from zincblende ore by Reich and Richter the discoverers of indium.[6]

In(OH)3 is amphoteric, like Ga(OH)3 and Al(OH)3 but is much less acidic than Ga(OH)3[5] having a lower solubility in alkali than in acid[7] and is for all intents and purposes a basic hydroxide.[8] Dissolving In(OH)3 in strong alkali gives solutions that probably contain either four coordinate In(OH)4 or In(OH)4(H2O)[8] Reaction with acetic acid or carboxylic acids is likely to give the basic acetate or carboxylate salt, e.g. In(OH)(OOCCH3)2.[7]

At 10MPa pressure and 250-400 °C In(OH)3 converts to indium oxide hydroxide, InO(OH) (which has a distorted rutile structure)[5]

Rapid decompression of samples of In(OH)3 compressed at 34 GPa causes decomposition, yielding some indium metal [9]

Laser ablation of In(OH)3 gives InOH, indium(I) hydroxide, a bent molecule with an In-O-H angle of around 132 ° and an In-O bond length of 201.7 pm [10]

References

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />
  1. The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, Simon Aldridge, Anthony J. Downs, wiley, 2011, ISBN 978-0-470-68191-6
  2. Hydrothermal Investigation of the systems In2O3-H2O-Na2O and In2O3-D2O-Na2O. The crystal structure of rhombohedral In2O3 and In(OH)3, A Norlund Christensen, N.C. Broch, Acta Chemica Scandinavica 21 (1967) 1046-056
  3. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN 0123526515
  6. Advanced Inorganic Chemistry-Vol.-I,31st Edition, 2008, Krishna Prakashan Media, ISBN 9788187224037
  7. 7.0 7.1 The Aqueous Chemistry of the Elements, George K. Schweitzer , Lester L. Pesterfield , Oxford University Press, 19 Dec 2009, ISBN 978-0195393354
  8. 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.