7-limit tuning



7-limit or septimal tunings and intervals are musical instrument tunings that have a limit of seven: the largest prime factor contained in the interval ratios between pitches is seven. Thus, for example, 50:49 is a 7-limit interval, but 14:11 is not.
For example, the greater just minor seventh, 9:5 <phonos file="Greater just minor seventh on C.mid">Play</phonos> is a 5-limit ratio, the harmonic seventh has the ratio 7:4 and is thus a septimal interval. Similarly, the septimal chromatic semitone, 21:20, is a septimal interval as 21÷7=3. The harmonic seventh is used in the barbershop seventh chord and music. (<phonos file="Barbershop secondary dominant.mid">Play</phonos>) Compositions with septimal tunings include La Monte Young's The Well-Tuned Piano, Ben Johnston's String Quartet No. 4, and Lou Harrison's Incidental Music for Corneille's Cinna.
The Great Highland Bagpipe is tuned to a ten-note seven-limit scale:[3] 1:1, 9:8, 5:4, 4:3, 27:20, 3:2, 5:3, 7:4, 16:9, 9:5.
In the 2nd century Ptolemy described the septimal intervals: 7/4, 8/7, 7/6, 12/7, 7/5, and 10/7.[4] Those considering 7 to be consonant include Marin Mersenne,[5] Giuseppe Tartini, Leonhard Euler, François-Joseph Fétis, J. A. Serre, Moritz Hauptmann, Alexander John Ellis, Wilfred Perrett, Max Friedrich Meyer.[4] Those considering 7 to be dissonant include Gioseffo Zarlino, René Descartes, Jean-Philippe Rameau, Hermann von Helmholtz, A. J. von Öttingen, Hugo Riemann, Colin Brown, and Paul Hindemith ("chaos"[6]).[4]
Contents
Lattice and tonality diamond
7/4 | ||||||
3/2 | 7/5 | |||||
5/4 | 6/5 | 7/6 | ||||
1/1 | 1/1 | 1/1 | 1/1 | |||
8/5 | 5/3 | 12/7 | ||||
4/3 | 10/7 | |||||
8/7 |
This diamond contains four identities (1, 3, 5, 7 [P8, P5, M3, H7]). Similarly, the 2,3,5,7 pitch lattice contains four identities and thus 3-4 axes, but a potentially infinite number of pitches. LaMonte Young created a lattice containing only identities 3 and 7, thus requiring only two axes, for The Well-Tuned Piano.
Approximation using equal temperament
It is possible to approximate 7-limit music using equal temperament, for example 31-ET.
See also
Sources
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Fonville, John. "Ben Johnston's Extended Just Intonation- A Guide for Interpreters", p.112, Perspectives of New Music, Vol. 29, No. 2 (Summer, 1991), pp. 106-137.
- ↑ Fonville (1991), p.128.
- ↑ Benson, Dave (2007). Music: A Mathematical Offering, p.212. ISBN 9780521853873.
- ↑ 4.0 4.1 4.2 Partch, Harry (2009). Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, p.90-1. ISBN 9780786751006.
- ↑ Shirlaw, Matthew (1900). Theory of Harmony, p.32. ISBN 978-1-4510-1534-8.
- ↑ Hindemith, Paul (1942). Craft of Musical Composition, v.1, p.38. ISBN 0901938300.