Dihydroxyacetone phosphate
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Lua error in package.lua at line 80: module 'strict' not found.
![]() |
|
Names | |
---|---|
IUPAC name
3-Hydroxy-2-oxopropyl phosphate
|
|
Other names
Dihydroxyacetone phosphate
DHAP |
|
Identifiers | |
57-04-5 ![]() |
|
ChEBI | CHEBI:57642 ![]() |
ChemSpider | 648 ![]() |
Jmol 3D model | Interactive image |
PubChem | 668 |
|
|
|
|
Properties | |
C3H7O6P | |
Molar mass | 170.06 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
![]() ![]() ![]() |
|
Infobox references | |
Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is a biochemical compound involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis.
Role in glycolysis
Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-bisphosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.
β-D-fructose 1,6-bisphosphate | fructose-bisphosphate aldolase | D-glyceraldehyde 3-phosphate | dihydroxyacetone phosphate | ||
![]() |
![]() |
+ | ![]() |
||
![]() |
|||||
Compound C05378 at KEGG Pathway Database. Enzyme 4.1.2.13 at KEGG Pathway Database. Compound C00111 at KEGG Pathway Database. Compound C00118 at KEGG Pathway Database.
The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.
Dihydroxyacetone phosphate | triose phosphate isomerase | D-glyceraldehyde 3-phosphate | |
![]() |
![]() |
||
![]() |
|||
Compound C00111 at KEGG Pathway Database.Enzyme 5.3.1.1 at KEGG Pathway Database.Compound C00118 at KEGG Pathway Database.
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Role in other pathways
In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate, both of which are used to reform ribulose 5-phosphate, the 'key' carbohydrate of the Calvin cycle.
DHAP is also the product of the dehydrogenation of L-glycerol-3-phosphate, which is part of the entry of glycerol (sourced from triglycerides) into the glycolytic pathway. Conversely, reduction of glycolysis-derived DHAP to L-glycerol-3-phosphate provides adipose cells with the activated glycerol backbone they require to synthesize new triglycerides. Both reactions are catalyzed by the enzyme glycerol 3-phosphate dehydrogenase with NAD+/NADH as cofactor.
DHAP also has a role in the ether-lipid biosynthesis process in the protozoan parasite Leishmania mexicana.
See also
Glycolysis Metabolic Pathway | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
<templatestyles src="Asbox/styles.css"></templatestyles>
Cite error: <ref>
tags exist for a group named "§", but no corresponding <references group="§"/>
tag was found, or a closing </ref>
is missing
- Pages with reference errors
- Articles without KEGG source
- Articles without UNII source
- Articles with changed InChI identifier
- Pages using collapsible list with both background and text-align in titlestyle
- Chemical articles using a fixed chemical formula
- Navbox orphans
- Glycolysis
- Photosynthesis
- Ketones
- Organophosphates
- Biochemistry stubs