Empirical distribution function
In statistics, the empirical distribution function is the distribution function associated with the empirical measure of the sample. This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. The empirical distribution function estimates the cumulative distribution function underlying of the points in the sample and converges with probability 1 according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function.
Contents
Definition
Let (x1, …, xn) be independent, identically distributed real random variables with the common cumulative distribution function F(t). Then the empirical distribution function is defined as [1][2]
where is the indicator of event A. For a fixed t, the indicator
is a Bernoulli random variable with parameter p = F(t), hence
is a binomial random variable with mean nF(t) and variance . This implies that
is an unbiased estimator for F(t).
However, in some textbooks,[3][4] the definition is given as
Asymptotic properties
Since the ratio (n+1) / n approaches 1 as n goes to infinity, the asymptotic properties of the two definitions that are given above are the same.
By the strong law of large numbers, the estimator converges to F(t) as almost surely, for every value of t:[1]
thus the estimator is consistent. This expression asserts the pointwise convergence of the empirical distribution function to the true cumulative distribution function. There is a stronger result, called the Glivenko–Cantelli theorem, which states that the convergence in fact happens uniformly over t:[5]
The sup-norm in this expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between the empirical distribution and the assumed true cumulative distribution function F. Other norm functions may be reasonably used here instead of the sup-norm. For example, the L²-norm gives rise to the Cramér–von Mises statistic.
The asymptotic distribution can be further characterized in several different ways. First, the central limit theorem states that pointwise, has asymptotically normal distribution with the standard
rate of convergence:[1]
This result is extended by the Donsker’s theorem, which asserts that the empirical process , viewed as a function indexed by
, converges in distribution in the Skorokhod space
to the mean-zero Gaussian process
, where B is the standard Brownian bridge.[5] The covariance structure of this Gaussian process is
The uniform rate of convergence in Donsker’s theorem can be quantified by the result known as the Hungarian embedding:[6]
Alternatively, the rate of convergence of can also be quantified in terms of the asymptotic behavior of the sup-norm of this expression. Number of results exist in this venue, for example the Dvoretzky–Kiefer–Wolfowitz inequality provides bound on the tail probabilities of
:[6]
In fact, Kolmogorov has shown that if the cumulative distribution function F is continuous, then the expression converges in distribution to
, which has the Kolmogorov distribution that does not depend on the form of F.
Another result, which follows from the law of the iterated logarithm, is that [6]
and
See also
- Càdlàg functions
- Dvoretzky–Kiefer–Wolfowitz inequality
- Empirical probability
- Empirical process
- Frequency (statistics)
- Kaplan–Meier estimator for censored processes
- Survival function
- Distribution fitting
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Lua error in package.lua at line 80: module 'strict' not found.
External links
![]() |
Wikimedia Commons has media related to Empirical distribution functions. |
- ↑ 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ PlanetMath
- ↑ Coles, S. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer, p. 36, Definition 2.4. ISBN 978-1-4471-3675-0.
- ↑ Madsen, H.O., Krenk, S., Lind, S.C. (2006) Methods of Structural Safety. Dover Publications. p. 148-149. ISBN 0486445976
- ↑ 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 6.0 6.1 6.2 Lua error in package.lua at line 80: module 'strict' not found.