Euler's theorem in geometry
In geometry, Euler's theorem states that the distance d between the circumcentre and incentre of a triangle can be expressed as[1][2][3][4]
or equivalently
where R and r denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively). The theorem is named for Leonhard Euler, who published it in 1767.[5] However, the same result was published earlier by William Chapple in 1746.[6]
From the theorem follows the Euler inequality:[2][3]
which holds with equality only in the equilateral case.[7]:p. 198
Proof
Letting O be the circumcentre of triangle ABC, and I be its incentre, the extension of AI intersects the circumcircle at L. Then L is the midpoint of arc BC. Join LO and extend it so that it intersects the circumcircle at M. From I construct a perpendicular to AB, and let D be its foot, so ID = r. It is not difficult to prove that triangle ADI is similar to triangle MBL, so ID / BL = AI / ML, i.e. ID × ML = AI × BL. Therefore 2Rr = AI × BL. Join BI. Because
- ∠ BIL = ∠ A / 2 + ∠ ABC / 2,
- ∠ IBL = ∠ ABC / 2 + ∠ CBL = ∠ ABC / 2 + ∠ A / 2,
we have ∠ BIL = ∠ IBL, so BL = IL, and AI × IL = 2Rr. Extend OI so that it intersects the circumcircle at P and Q; then PI × QI = AI × IL = 2Rr, so (R + d)(R − d) = 2Rr, i.e. d2 = R(R − 2r).
Stronger version of the inequality
A stronger version[7]:p. 198 is
See also
- Fuss' theorem for the relation among the same three variables in bicentric quadrilaterals
- Poncelet's closure theorem, showing that there is an infinity of triangles with the same R, r, and d
- List of triangle inequalities
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
External links
![]() |
Wikimedia Commons has media related to [[commons:Lua error in Module:WikidataIB at line 506: attempt to index field 'wikibase' (a nil value).|Lua error in Module:WikidataIB at line 506: attempt to index field 'wikibase' (a nil value).]]. |
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found..
- ↑ 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found..
- ↑ Lua error in package.lua at line 80: module 'strict' not found.. The formula for the distance is near the bottom of p.123.
- ↑ 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found..