Gromov's theorem on groups of polynomial growth

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov,[1] characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length (relative to a symmetric generating set) at most n is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial function p.

A nilpotent group G is a group with a lower central series terminating in the identity subgroup.

Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index.

There is a vast literature on growth rates, leading up to Gromov's theorem. An earlier result of Joseph A. Wolf[2] showed that if G is a finitely generated nilpotent group, then the group has polynomial growth. Yves Guivarc'h[3] and independently Hyman Bass[4] (with different proofs) computed the exact order of polynomial growth. Let G be a finitely generated nilpotent group with lower central series

 G = G_1 \supseteq G_2 \supseteq \ldots.

In particular, the quotient group Gk/Gk+1 is a finitely generated abelian group.

The Bass–Guivarc'h formula states that the order of polynomial growth of G is

 d(G) = \sum_{k \geq 1} k \ \operatorname{rank}(G_k/G_{k+1})

where:

rank denotes the rank of an abelian group, i.e. the largest number of independent and torsion-free elements of the abelian group.

In particular, Gromov's theorem and the Bass–Guivarch formula imply that the order of polynomial growth of a finitely generated group is always either an integer or infinity (excluding for example, fractional powers).

In order to prove this theorem Gromov introduced a convergence for metric spaces. This convergence, now called the Gromov–Hausdorff convergence, is currently widely used in geometry.

A relatively simple proof of the theorem was found by Bruce Kleiner.[5] Later, Terence Tao and Yehuda Shalom modified Kleiner's proof to make an essentially elementary proof as well as a version of the theorem with explicit bounds.[6][7]

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.