Himmelblau's function
From Infogalactic: the planetary knowledge core
In mathematical optimization, Himmelblau's function is a multi-modal function, used to test the performance of optimization algorithms. The function is defined by:
It has one local maximum at and
where
, and four identical local minima:
The locations of all the minima can be found analytically. However, because they are roots of cubic polynomials, when written in terms of radicals, the expressions are somewhat complicated.[citation needed]
The function is named after David Mautner Himmelblau (1924–2011), who introduced it.[2]
See also
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
<templatestyles src="Asbox/styles.css"></templatestyles>