Pentaapeirogonal tiling
From Infogalactic: the planetary knowledge core
pentaapeirogonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane |
|
Type | Hyperbolic uniform tiling |
Vertex configuration | (5.∞)2 |
Schläfli symbol | r{∞,5} |
Wythoff symbol | 2 | ∞ 5 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [∞,5], (*∞52) |
Dual | Order-5-infinite rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the pentaapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,5}.
Related polyhedra and tiling
*5n2 symmetry mutations of quasiregular tilings: (5.n)2 | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *5n2 [n,5] |
Spherical | Hyperbolic | Paracompact | Noncompact | ||||
*352 [3,5] |
*452 [4,5] |
*552 [5,5] |
*652 [6,5] |
*752 [7,5] |
*852 [8,5]... |
*∞52 [∞,5] |
[ni,5] |
|
Figures | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Config. | (5.3)2 | (5.4)2 | (5.5)2 | (5.6)2 | (5.7)2 | (5.8)2 | (5.∞)2 | (5.ni)2 |
Rhombic figures |
![]() |
![]() |
![]() |
![]() |
||||
Config. | V(5.3)2 | V(5.4)2 | V(5.5)2 | V(5.6)2 | V(5.7)2 | V(5.8)2 | V(5.∞)2 | V(5.∞)2 |
See also
![]() |
Wikimedia Commons has media related to Uniform tiling 5-i-5-i. |
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Lua error in package.lua at line 80: module 'strict' not found.