Separation relation
In mathematics, a separation relation is a formal way to arrange a set of objects in an unoriented circle. It is defined as a quaternary relation S(a, b, c, d) satisfying certain axioms, which is interpreted as asserting that a and c separate b from d.[1]
Whereas a linear order endows a set with a positive end and a negative end, a separation relation forgets not only which end is which, but also where the ends are. In this way it is a final, further weakening of the concepts of a betweenness relation and a cyclic order. There is generally nothing else that can be forgotten: up to the relevant sense of interdefinability, these three relations are the only nontrivial reducts of the ordered set of rational numbers.[2]
Application
The separation may be used in showing the real projective plane is a complete space. The separation relation was described with axioms in 1898 by Giovanni Vailati.[3]
- abcd = badc
- abcd = adcb
- abcd ⇒ ¬ acbd
- abcd ∨ acdb ∨ adbc
- abcd ∧ acde ⇒ abde.
The relation of separation of points was written AC//BD by H. S. M. Coxeter in his textbook The Real Projective Plane.[4] The axiom of continuity used is "Every monotonic sequence of points has a limit." The separation relation is used to provide definitions:
- {An} is monotonic ≡ ∀ n > 1
- M is a limit ≡ (∀ n > 2
) ∧ (∀ P
⇒ ∃ n
).
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Bertrand Russell (1903) Principles of Mathematics, page 214
- ↑ H. S. M. Coxeter (1949) The Real Projective Plane, Chapter 10: Continuity, McGraw Hill