Sulfene

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Sulfene
Names
Other names
Thioformaldehyde-S,S-dioxide[citation needed]
Identifiers
917-73-7 N
ChemSpider 10645700 YesY
Jmol 3D model Interactive image
PubChem 12244237
  • InChI=1S/CH2O2S/c1-4(2)3/h1H2 YesY
    Key: LZOZLBFZGFLFBV-UHFFFAOYSA-N YesY
  • InChI=1/CH2O2S/c1-4(2)3/h1H2
    Key: LZOZLBFZGFLFBV-UHFFFAOYAF
  • C=S(=O)=O
Properties
CH
2
SO
2
Molar mass 78.090 g mol−1
Structure
trigonal planar at C and S
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Sulfene is an extremely reactive chemical compound with the formula H2C=SO2. It is the simplest member of the sulfenes, the group of compounds which are S,S-dioxides of thioaldehydes and thioketones, and have the general formula R2C=SO2.[1][2][3]

Preparation

The first general method for preparation of sulfene as an intermediate, reported simultaneously in 1962 by Gilbert Stork[4] and by Günther Optiz,[5] involved removal of hydrogen chloride from methanesulfonyl chloride using triethylamine in the presence of an enamine as trapping agent. The formation of a thietane 1,1-dioxide derivative was taken as evidence for the intermediacy of sulfene. Because of the highly electrophilic character of sulfene, the use of amines presents difficulties, since they can intercept the sulfene to form complexes, which may display reduced activity in trapping reactions compared to sulfene itself. A simple alternative which avoids the use of amines involves desilylation of trimethylsilylmethanesulfonyl chloride with cesium fluoride in the presence of trapping agents.[6]

(CH3)3SiCH2SO2Cl + CsF → [CH2=SO2] + (CH3)3SiF + CsCl

Reactions

Sulfenes react with enamines, ynamines, and 1,3-cyclopentadienes to give thietanes, thietes and Diels-Alder adducts, respectively. In the presence of a chiral tertiary amine complex, several sulfenes could be trapped with trichloroacetaldehyde (chloral) in a catalytic asymmetric synthesis of β-sultones (four-membered ring sulfonate esters).[7] Sulfene can also undergo insertion into metal-hydrogen bonds.[8]

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "sulfenes".
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.