Sunspot
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
|
||||
|
Sunspots are temporary phenomena on the Sun's photosphere that appear as spots darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux that inhibit convection. Sunspots usually appear in pairs of opposite magnetic polarity.[2] Their number varies according to the approximately 11-year solar cycle.
Individual sunspots or groups of sunspots may last anywhere from a few days to a few months, but eventually decay. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value).[3] to Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value)..[4] Larger sunspots can be visible from Earth without the aid of a telescope.[5] They may travel at relative speeds, or proper motions, of a few hundred meters per second when they first emerge.
Indicating intense magnetic activity, sunspots accompany secondary phenomena such as coronal loops, prominences, and reconnection events. Most solar flares and coronal mass ejections originate in magnetically active regions around visible sunspot groupings. Similar phenomena indirectly observed on stars other than the Sun are commonly called starspots, and both light and dark spots have been measured.[6]
Contents
History
Lua error in Module:Broader at line 30: attempt to call field '_formatLink' (a nil value). The earliest record of sunspots is found in the Chinese I Ching, completed before 800 BC. The text describes that a dou and mei were observed in the sun, where both words refer to a small obscuration.[7] The earliest record of a deliberate sunspot observation also comes from China, and dates to 364 BC, based on comments by astronomer Gan De (甘德) in a star catalogue.[8] By 28 BC, Chinese astronomers were regularly recording sunspot observations in official imperial records.[9]
The first clear mention of a sunspot in Western literature is circa 300 BC, by ancient Greek scholar Theophrastus, student of Plato and Aristotle and successor to the latter.[10]
The first drawings of sunspots were made by English monk John of Worcester in December 1128.[11][12]
Sunspots were first observed telescopically in December 1610 by English astronomer Thomas Harriot.[13] His observations were recorded in his notebooks and were followed in March 1611 by observations and reports by Frisian astronomers Johannes and David Fabricius.[14][15] After Johannes Fabricius' death at the age of 29, his reports remained obscure and were eclipsed by the independent discoveries of and publications about sunspots by Christoph Scheiner and Galileo Galilei.[16] Galileo likely began telescopic sunspot observations around the same time as Harriot; however, Galileo's records did not start until 1612.[17]
In the early 19th Century, William Herschel was one of the first to equate sunspots with heating and cooling on Earth and believed that certain features of sunspots would indicate increased heating on Earth.[18] During his recognition of solar behavior and hypothesized solar structure, he inadvertently picked up the relative absence of sunspots from July 1795 to January 1800 and was perhaps the first to construct a past record of observed or missing sunspots. From this he found that the absence of sunspots coincided with high wheat prices in England. The president of the Royal Society commented that the upward trend in wheat prices was due to monetary inflation.[19] Years later scientists such as Richard Carrington in 1865 and John Henry Poynting in 1884 tried and failed to find a connection between wheat prices and sunspots, and modern analysis finds that there is no statistically significant correlation between wheat prices and sunspot numbers.[20]
Physics
Heliophysics | |
Phenomena | |
---|---|
Sunspots have two parts: its center umbra, the darkest part, where the magnetic field is approximately vertical (normal to the Sun's surface) and the surrounding penumbra, which is lighter, where the magnetic field is more inclined.
The temperature of the umbra is roughly Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value)., in contrast to the penumbra at about Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value). leaving sunspots clearly visible as dark spots, occasionally visible even to the naked eye. This is because the luminance (which is essentially "brightness" in visible light) of a heated black body (closely approximated by the photosphere) at these temperatures varies greatly with temperature. Isolated from the surrounding photosphere, a single sunspot would shine brighter than the full moon, with a crimson-orange color.[21]
Lifecycle
Any given appearance of a sunspot may last anywhere from a few days to a few months, though groups of sunspots and their active regions tend to last weeks or months, but all do eventually decay and disappear. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value). to Lua error in Module:Convert at line 1851: attempt to index local 'en_value' (a nil value)..
Although the details of sunspot generation are still a matter of research, it appears that sunspots are the visible counterparts of magnetic flux tubes in the Sun's convective zone that get "wound up" by differential rotation. If the stress on the tubes reaches a certain limit, a loop of the tube may project through the photosphere, the Sun's visible surface. Convection is inhibited at the puncture points; the energy flux from the Sun's interior decreases, and with it, surface temperature, causing the surface area through which the magnetic field passes to look dark against the bright background of the photosphere.
The Wilson effect implies that sunspots are depressions on the Sun's surface. Observations using the Zeeman effect show that prototypical sunspots come in pairs with opposite magnetic polarity. From cycle to cycle, the polarities of leading and trailing (with respect to the solar rotation) sunspots change from north/south to south/north and back. Sunspots usually appear in groups.
Magnetic pressure should tend to remove field concentrations, causing the sunspots to disperse, but sunspot lifetimes are measured in days to weeks. In 2001, observations from the Solar and Heliospheric Observatory (SOHO) using sound waves traveling below the photosphere (local helioseismology) were used to develop a three-dimensional image of the internal structure below sunspots; these observations show that a powerful downdraft underneath each sunspot, forms a rotating vortex that sustains the concentrated magnetic field.[22]
Solar cycle
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Solar cycle duration is typically about eleven years, varying from just under 10 to just over 12 years. Over the solar cycle, sunspot populations rise quickly and then fall more slowly. The point of highest sunspot activity during a cycle is known as solar maximum, and the point of lowest activity as solar minimum. This period is also observed in most other solar activity and is linked to a variation in the solar magnetic field that changes polarity with this period.
Early in the cycle, sunspots appear at higher latitudes and then move towards the equator as the cycle approaches maximum, following Spörer's law. Spots from two sequential cycles co-exist for several years during the years near solar minimum. Spots from sequential cycles can be distinguished by direction of their magnetic field and their latitude.
The Wolf number sunspot index counts the average number of sunspots and groups of sunspots during specific intervals. The 11-year solar cycles are numbered sequentially, starting with the observations made in the 1750s.[23]
George Ellery Hale first linked magnetic fields and sunspots in 1908.[24] Hale suggested that the sunspot cycle period is 22 years, covering two periods of increased and decreased sunspot numbers, accompanied by polar reversals of the solar magnetic dipole field. Horace W. Babcock later proposed a qualitative model for the dynamics of the solar outer layers. The Babcock Model explains that magnetic fields cause the behavior described by Spörer's law, as well as other effects, which are twisted by the Sun's rotation.
Longer-period trends
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Sunspot numbers also change over long periods. For example during the period known as the modern maximum from 1900 to 1958 the solar maxima trend of sunspot count was upwards; for the following 60 years the trend was mostly downwards.[25] Overall, the Sun was last as active as the modern maximum over 8,000 years ago.[26]
Sunspot number is correlated with the intensity of solar radiation over the period since 1979, when satellite measurements became available. The variation caused by the sunspot cycle to solar output is on the order of 0.1% of the solar constant (a peak-to-trough range of 1.3 W·m−2 compared with 1366 W·m−2 for the average solar constant).[27][28]
Modern observation
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
Sunspots are observed with land-based and Earth-orbiting solar telescopes. These telescopes use filtration and projection techniques for direct observation, in addition to various types of filtered cameras. Specialized tools such as spectroscopes and spectrohelioscopes are used to examine sunspots and sunspot areas. Artificial eclipses allow viewing of the circumference of the Sun as sunspots rotate through the horizon.
Since looking directly at the Sun with the naked eye permanently damages human vision, amateur observation of sunspots is generally conducted using projected images, or directly through protective filters. Small sections of very dark filter glass, such as a #14 welder's glass, are effective. A telescope eyepiece can project the image, without filtration, onto a white screen where it can be viewed indirectly, and even traced, to follow sunspot evolution. Special purpose hydrogen-alpha narrow bandpass filters and aluminum-coated glass attenuation filters (which have the appearance of mirrors due to their extremely high optical density) on the front of a telescope provide safe observation through the eyepiece.
Application
Due to its link to other kinds of solar activity, sunspot occurrence can be used to help predict space weather, the state of the ionosphere, and hence the conditions of short-wave radio propagation or satellite communications. High sunspot activity is celebrated by members of the amateur radio community as a harbinger of excellent ionospheric propagation conditions that greatly increase radio range in the HF bands. During sunspot peaks, worldwide radio communication can be possible on frequencies as high as the 6-meter VHF band.[30] Solar activity (and the solar cycle) have been implicated in global warming, originally the role of the Maunder Minimum of sunspot occurrence in the Little Ice Age in European winter climate.[31] Sunspots themselves, in terms of the magnitude of their radiant-energy deficit, have a weak effect on solar flux[32] however the total solar flux increases as "At solar maximum the Sun is some 0.1% brighter than its solar-minimum level". On longer time scales, such as the solar cycle, other magnetic phenomena (faculae and the chromospheric network) correlate with sunspot occurrence.[33]
Starspot
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
In 1947, G. E. Kron proposed that starspots were the reason for periodic changes in brightness on red dwarfs.[6] Since the mid-1990s, starspot observations have been made using increasingly powerful techniques yielding more and more detail: photometry showed starspot growth and decay and showed cyclic behavior similar to the Sun's; spectroscopy examined the structure of starspot regions by analyzing variations in spectral line splitting due to the Zeeman effect; Doppler imaging showed differential rotation of spots for several stars and distributions different from the Sun's; spectral line analysis measured the temperature range of spots and the stellar surfaces. For example, in 1999, Strassmeier reported the largest cool starspot ever seen rotating the giant K0 star XX Triangulum (HD 12545) with a temperature of 3,500 K (3,230 °C), together with a warm spot of 4,800 K (4,530 °C).[6][34]
Gallery
-
Sunset superior mirage of sunspot #930.
-
Tracking sunspots from Mars (animation; 8 July 2015).
Videos
See also
<templatestyles src="Div col/styles.css"/>
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
Further reading
- Lua error in package.lua at line 80: module 'strict' not found.
External links
Wikimedia Commons has media related to Sunspots. |
- Sunspot Database based on Terrestrial (GPR/DPD) and Satellite (SOHO/SDO) observations from 1872 to Nowadays with the newest data. ()
- Solar Cycle 24 and VHF Aurora Website (www.solarcycle24.com)
- Belgium World Data Center for the sunspot index
- High resolution sunspot image
- Sunspot images in high-res Impressive collection of sunspot images
- NOAA Solar Cycle Progression: Current solar cycle.
- Current conditions: Space weather
- Lockheed Martin Solar and Astrophysics Lab
- Sun|trek website An educational resource for teachers and students about the Sun and its effect on the Earth
- Tools to display the current sunspot number in a browser
- The Sharpest View of the Sun
- Daily Sunspot Update and Picture of the Sun (www.spaceweather.com)
- Animated explanation of Sunspots in the Photosphere (University of South Wales)
Sunspot data
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.
- Lua error in package.lua at line 80: module 'strict' not found.[permanent dead link]
- International Sunspot Number—sunspot maximum and minimum 1610–present; annual numbers 1700–present; monthly numbers 1749–present; daily values 1818–present; and sunspot numbers by north and south hemisphere. The McNish–Lincoln sunspot prediction is also included.
- American sunspot numbers 1945–present
- Ancient sunspot data 165 BC to 1684 AD
- Group Sunspot Numbers (Doug Hoyt re-evaluation) 1610–1995
- Lua error in package.lua at line 80: module 'strict' not found.[permanent dead link]
- Lua error in package.lua at line 80: module 'strict' not found.
Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Gentle giant sunspot region 2192
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ harvard.edu
- ↑ 6.0 6.1 6.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ "Letter to the Editor: Sunspot observations by Theophrastus revisited", and see Theophrastus' Fragment VI, De Signis Tempestatum, 11.4-5.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Stefan Hughes, Catchers of the Light: The Forgotten Lives of the Men and Women Who First Photographed the Heavens, ArtDeCiel Publishing, 2012 p. 317
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Soon, W., and Yaskell, S.H., The Maunder Minimum and the Variable Sun-earth Connection (World Scientific Press: 2003) pp. 87–88
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found. PDF Copy Archived 16 February 2010 at the Wayback Machine
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 35.0 35.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 36.0 36.1 Lua error in package.lua at line 80: module 'strict' not found.
- Pages with reference errors
- Articles with short description
- Use dmy dates from March 2013
- Pages with broken file links
- Commons category link is locally defined
- Articles with dead external links from January 2018
- Articles with permanently dead external links
- Solar phenomena
- Vortices
- Webarchive template wayback links