Rectified 8-simplexes

From Infogalactic: the planetary knowledge core
(Redirected from Trirectified 8-simplex)
Jump to: navigation, search
8-simplex t0.svg
8-simplex
8-simplex t1.svg
Rectified 8-simplex
150px
Birectified 8-simplex
150px
Trirectified 8-simplex
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.

There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.

Rectified 8-simplex

Rectified 8-simplex
Type uniform 8-polytope
Coxeter symbol 061
Schläfli symbol t1{37}
r{37} = {36,1}
or \left\{\begin{array}{l}3, 3, 3, 3, 3,3\\3\end{array}\right\}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces 18
6-faces 108
5-faces 336
4-faces 630
Cells 756
Faces 588
Edges 252
Vertices 36
Vertex figure 7-simplex prism, {}×{3,3,3,3,3}
Petrie polygon enneagon
Coxeter group A8, [37], order 362880
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1
8
. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Coordinates

The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 8-simplex t1.svg 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Birectified 8-simplex

Birectified 8-simplex
Type uniform 8-polytope
Coxeter symbol 052
Schläfli symbol t2{37}
2r{37} = {35,2} or
\left\{\begin{array}{l}3, 3, 3, 3, 3\\3, 3\end{array}\right\}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces 18
6-faces 144
5-faces 588
4-faces 1386
Cells 2016
Faces 1764
Edges 756
Vertices 84
Vertex figure {3}×{3,3,3,3}
Coxeter group A8, [37], order 362880
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2
8
. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The birectified 8-simplex is the vertex figure of the 152 honeycomb.

Coordinates

The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Trirectified 8-simplex

Trirectified 8-simplex
Type uniform 8-polytope
Coxeter symbol 043
Schläfli symbol t3{37}
3r{37} = {34,3} or
\left\{\begin{array}{l}3, 3, 3, 3\\3, 3,3 \end{array}\right\}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
or CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png
7-faces 18
6-faces
5-faces
4-faces
Cells
Faces
Edges 1260
Vertices 126
Vertex figure {3,3}×{3,3,3}
Petrie polygon enneagon
Coxeter group A7, [37], order 362880
Properties convex

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S3
8
. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png.

Coordinates

The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph 120pxpx 120pxpx 120pxpx 120pxpx
Dihedral symmetry [9] [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 120pxpx 120pxpx 120pxpx
Dihedral symmetry [5] [4] [3]

Related polytopes

This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb.

It is also one of 135 uniform 8-polytopes with A8 symmetry.

Notes

<templatestyles src="Reflist/styles.css" />

Cite error: Invalid <references> tag; parameter "group" is allowed only.

Use <references />, or <references group="..." />

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 8D, Uniform polytopes (polyzetta) o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene

External links