beta-Carboline

From Infogalactic: the planetary knowledge core
Jump to: navigation, search


β-Carboline
Beta-Carboline.svg
The prototype of a class of compounds known as  β-carbolines
Names
IUPAC name
9H-β-carboline
Other names
9H-pyrido[3,4-b]indole
Identifiers
244-63-3 YesY
ChEBI CHEBI:109895 YesY
ChEMBL ChEMBL275224 YesY
ChemSpider 58486 YesY
8222
Jmol 3D model Interactive image
MeSH norharman
PubChem 64961
  • InChI=1S/C11H8N2/c1-2-4-10-8(3-1)9-5-6-12-7-11(9)13-10/h1-7,13H YesY
    Key: AIFRHYZBTHREPW-UHFFFAOYSA-N YesY
  • InChI=1/C11H8N2/c1-2-4-10-8(3-1)9-5-6-12-7-11(9)13-10/h1-7,13H
    Key: AIFRHYZBTHREPW-UHFFFAOYAG
  • c2cncc3nc1ccccc1c23
Properties
C11H8N2
Molar mass 168.20 g/mol
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

β-Carboline (9H-pyrido[3,4-b]indole), also known as norharmane, is a nitrogen containing heterocycle. It is also the prototype of a class of compounds known as β-carbolines.

Pharmacology

β-Carboline alkaloids are widespread in plants and animals, and frequently act as benzodiazepine inverse agonists. As components of the liana Banisteriopsis caapi, the β-carbolines harmine, harmaline, and tetrahydroharmine play a pivotal role in the pharmacology of the indigenous psychedelic drug ayahuasca by preventing the breakdown of dimethyltryptamine in the gut by reversibly inhibiting monoamine oxidase, thus making it psychoactive upon oral administration. Some β-carbolines, notably tryptoline and pinoline, may be formed naturally in the human body. The latter is possibly implicated along with melatonin in the role of the pineal gland in regulating the sleep-wake cycle.[citation needed] β-carboline is a benzodiazepine receptor inverse agonist and can therefore have convulsive, anxiogenic and memory enhancing effects.[1] 9-methyl-β-carbolines appear to induce DNA damage when exposed to ultra-violet light.[2]

Structure

β-Carboline belongs to the group of indole alkaloids and consist of pyridine ring that is fused to an indole skeleton.[3] The structure of β-carboline is similar to that of tryptamine, with the ethylamine chain re-connected to the indole ring via an extra carbon atom, to produce a three-ringed structure. The biosynthesis of β-carbolines is believed to follow this route from analogous tryptamines.[4] Different levels of saturation are possible in the third ring, which is indicated here in the structural formula by colouring the optionally double bonds red and blue:

Substituted beta-carbolines (structural formula)

Examples of β-carbolines

Some of the more important β-carbolines are tabulated by structure below.

Short Name
Red Bond
Blue Bond
R1 R6 R7 Structure
β-Carboline
×
×
H
H
H
β-Carboline
Tryptoline    
H
H
H
Tryptoline
Pinoline    
H
OCH3
H
Pinoline
Harmane
×
 
CH3
H
H
Harmane
Harmine
×
×
CH3
H
OCH3
Harmine
Harmaline
×
 
CH3
H
OCH3
Harmaline
Tetrahydroharmine    
CH3
H
OCH3
Tetrahydroharmine

Occurrence in nature

Lua error in package.lua at line 80: module 'strict' not found. Eight plant families are known to express 64 different kinds of β-carboline alkaloids. By dry weight, the seeds of Peganum harmala (Syrian Rue) contain between 0.16%[5] and 5.9%[6] β-carboline alkaloids.

As a result of the presence of β-carbolines in the cuticle of scorpions, their skin is known to fluoresce when exposed to certain wavelengths of ultraviolet light such as that produced by a blacklight.[7]

A group of β-carboline derivatives, termed eudistomins were extracted from ascidians (marine tunicates of the family Ascidiacea), like Ritterella sigillinoides,[8] Lissoclinum fragile [9] or Pseudodistoma aureum.[10] Nostocarboline was isolated from freshwater cyanobacterium.

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and its Applications. Ratsch, Christian. Park Street Press c. 2005
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.

External links